
\qquad

Preview

Important Characteristics of Data \qquad

1. Center: A representative or average value that indicates where the middle of the data set is located.
2. Variation: A measure of the amount that the data values vary.
3. Distribution: The nature or shape of the spread of data over the range of values (such as bell-shaped, uniform, or skewed).
4. Outliers: Sample values that lie very far away from the vast majority of other sample values.
5. Time: Changing characteristics of the data over time.

Key Concept

When working with large data sets, it is often \qquad helpful to organize and summarize data by constructing a table called a frequency \qquad distribution, defined later. Because computer software and calculators can generate \qquad frequency distributions, the details of constructing them are not as important as what they tell us about data sets. It helps us understand the nature of the distribution of a data set.

Definition

* Frequency Distribution
(or Frequency Table) \qquad
shows how a data set is partitioned among all of several categories (or classes) by listing all
\qquad of the categories along with the number of data values in each of the categories.

Pulse Rates of Females and Males

Original Data \qquad

Table 2-1 Pulse Rates (beats per minute) of Females and Males \qquad $\begin{array}{llllllllllllllll}\text { Females } \\ 76 & 72 & 88 & 60 & 72 & 68 & 80 & 64 & 68 & 68 & 80 & 76 & 68 & 72 & 96 & 72 \\ 68 & 72 & 64 & 80\end{array}$ $\begin{array}{llllllllllllllllll}64 & 80 & 76 & 76 & 76 & 80 & 104 & 88 & 60 & 76 & 72 & 72 & 88 & 80 & 60 & 72 & 88 & 88 \\ 124 & 64\end{array}$ Males 764 $\begin{array}{llllllllllllllllll}68 & 64 & 88 & 72 & 64 & 72 & 60 & 88 & 76 & 60 & 96 & 72 & 56 & 64 & 60 & 64 & 84 & 76 \\ 84 & 88\end{array}$ $\begin{array}{llllllllllllllll}72 & 56 & 68 & 64 & 60 & 68 & 60 & 60 & 56 & 84 & 72 & 84 & 88 & 56 & 64 & 56 \\ 56 & 60 & 64 & 72\end{array}$

The frequency for a particular class is the number of original values that fall into that class.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2.1-9

Frequency Distributions \qquad
\qquad
Definitions \qquad
\qquad
\qquad
\qquad
\qquad

Class Boundaries

are the numbers used to separate classes, but without the gaps created by class limits

Table 2-2 Pulse Rates of Females

	Pulse Rate	Frequency
59.5	$60-69$	12
69.5	$70-79$	14
79.5	$80-89$	11
89.5	$90-99$	1
99.5	$100-109$	1
09.5	$110-119$	0
19.5	$120-129$	1
29.5		

Reasons for Constructing Frequency Distributions

1. Large data sets can be summarized.
2. We can analyze the nature of data.
3. We have a basis for constructing important graphs.

Constructing A Frequency Distribution

1. Determine the number of classes (should be between 5 and 20).
2. Calculate the class width (round up).
\qquad
class width $\approx \frac{\text { (maximum value) }-(\text { minimum value })}{\text { number of classes }}$ \qquad
3. Starting point: Choose the minimum data value or a convenient value below it as the first lower class limit.
4. Using the first lower class limit and class width, proceed to list the other lower class limits.
5. List the lower class limits in a vertical column and proceed to enter the upper class limits.
6. Take each individual data value and put a tally mark in the appropriate class. Add the tally marks to get the frequency.

Relative Frequency Distribution
 includes the same class limits as a frequency distribution, but the frequency of a class is replaced with a relative frequencies (a proportion) or a percentage frequency (a percent)
 relative frequency $=\frac{\text { class frequency }}{\text { sum of all frequencies }}$ $\begin{aligned} & \text { percentage } \\ & \text { frequency }\end{aligned}=\frac{\text { class frequency }}{\text { sum of all frequencies }} \times 100 \%$

Relative Frequency Distribution				
Table 2-2 of Females	Pulse Rates	Table 2-3 Relative Frequency Distribution of Pulse Rates of Females		
Pulse Rate	Frequency	Pulse Rate	Relative Frequency	
60-69	12	60-69	30\%	*
70-79	14	70-79	35\%	
80-89	11	80-89	27.5\%	
90-99	1	90-99	2.5\%	
100-109	1	100-109	2.5\%	
110-119	0	110-119	0	
120-129	1	120-129	2.5\%	
Total Freq	quency $=40$	* $12 / 40 \times$	= 30\%	
				2.1-19

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Table 2-2 of Females	Pulse Rates	Table 2-4 Frequency Di Pulse Rates	Cumulative istribution of of Females	
Pulse Rate	Frequency	Pulse Rate	cumulative Frequency	¢
60-69	12	Less than 70	12	
70-79	14	Less than 80	26	d
80-89	11	Less than 90	37	し
90-99	1	Less than 100	38	
100-109	1	Less than 110	39	
110-119	0	Less than 120	39	
120-129	1	Less than 130	40	

Critical Thinking Interpreting Frequency Distributions

In later chapters, there will be frequent reference to
\qquad data with a normal distribution. One key characteristic of a normal distribution is that it has a "bell" shape.

* The frequencies start low, then increase to one \qquad or two high frequencies, then decrease to a low frequency.
* The distribution is approximately symmetric, with frequencies preceding the maximum being roughly a mirror image of those that follow the maximum.

